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Significance 

Predicting and mitigating disease 
outbreaks is critical for protecting 
the health of human and wildlife 
populations. Here, we investigate 
the ultimate and proximate cause 
of salmonellosis outbreaks in 
wild birds from an ecological 
perspective. Building on well-
evidenced mechanisms, we show 
that climate patterns can alter 
food availability in coniferous 
forests, driving bird populations 
to migrate in high densities, often 
resulting in salmonellosis 
epidemics. We then demonstrate 
how we can use our modeling 
framework as a predictive tool to 
create outbreak forecasts that 
can inform the public about risks 
to wildlife and human health. 

Salmonellosis is a common bacterial infection that can lead to severe illness and death 
in humans as well as domesticated and wild animals. In bird populations, salmonel-
losis outbreaks are temporally irregular but occur simultaneously across large spatial 
extents, frequently leading to widespread avian mortality with occasional spillover 
to humans. Here, we test the hypothesis that avian salmonellosis epidemics result 
from a cascade of ecological processes triggered by climate variability in coniferous 
forests. Building on well-evidenced ecological mechanisms, we find strong evidence for 
multiyear causal links between temperature cues that drive substantial “boom-bust” 
cycles in tree cone production across North America, the subsequent irruptions of 
seed-eating birds, and, finally, the eventual occurrence and severity of avian salmo-
nellosis outbreaks in the United States. By using an integrated, multilevel Bayesian 
statistical model as a predictive tool to forecast future bird irruptions and disease 
outbreaks, we demonstrate that our methods can be employed as an early warning 
system for future epidemics, potentially mitigating outbreak severity among birds 
and lowering the risk of zoonotic spillover events by encouraging measures such as 
the temporary cessation of bird feeding ahead of high-risk periods. 

resource pulse | one health | ecological trap | masting | bird migration 

Understanding the causes of zoonotic outbreaks is a priority for global health and wildlife 
conservation, yet the ecology of many familiar zoonotic pathogens remains understudied 
(1, 2). Salmonellosis, a common and widespread disease in wild and domesticated animals, 
as well as humans, is caused by infection with bacteria from the genus  Salmonella and 
spread primarily via a fecal-oral route (3 , 4). Periodic salmonellosis outbreaks have been 
documented in North American songbirds for at least 40 y (4   –6), with outbreaks often 
killing thousands of birds and occasionally spilling over to humans through contact with 
wild birds and bird feeders (7). Like other zoonoses, the likelihood of salmonellosis out-
breaks in birds is determined by a complex combination of factors, including the distri-
bution and movement of host animals, the competence of a given species to harbor and 
transmit pathogens, and the probability of contact between infected individuals (1 , 8 ). 
Each of these factors can be influenced by variability in environmental conditions, which 
might ultimately regulate the probability of outbreak emergence in wildlife and related 
spillover into human populations (1 , 8). Although little is known about the drivers of 
these periodic avian salmonellosis outbreaks, evidence spread across ecological disciplines 
suggests a complex cascade of events is responsible (Fig. 1 ).           

Salmonellosis outbreaks among songbirds are especially common in a subset of 
seed-eating finch species (6). Many of these species share the uncommon life history 
trait of exhibiting “irruptions,” in which large numbers of individuals sporadically move 
from high-latitude and high-elevation coniferous forests to more southerly and lower 
elevation areas in some winters, resulting in substantial localized increases in the number 
of individual birds in these areas (9). The pine siskin (Spinus pinus) is one such finch 
species that appears to have a particularly strong association with large salmonellosis 
outbreaks (10), including involvement in a deadly avian epidemic in the winter of 
2020–2021 that led to human spillover and subsequent hospitalizations (7). Why pine 
siskins, in particular, experience high susceptibility to salmonellosis compared to other 
songbirds remains unclear (6), though their large population size and socially gregarious 
behavior (10) may contribute. Evidence from other migratory species suggests that the 
demands of long-distance movements like those that pine siskins undergo can often 
come at the expense of weakened immune function (11). The rapid dispersal of a high 
number of social, immunologically stressed irruptive migrants could set the stage for 
simultaneous epidemics occurring across large spatial extents. These risks may be espe-
cially heightened at areas that attract high densities of food-stressed individuals, such 
as bird feeders (4). D
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Fig. 1. A climate-mediated ecological cascade leads to salmonellosis 
outbreaks in the United States. Temperature differences in successive 
summers are associated with differences in tree cone production in high- 
elevation and high-latitude forests (Top row), such that a warm summer 
followed by a cold summer is associated with a drop in cone production the 
following year (Top Right panel). Cone production is negatively associated with 
facultative bird migrations (irruptions) of eight seed-eating species (Middle 
row), such that when cone numbers are low, birds are more likely to irrupt 
in large numbers (Middle row, Right panel). When irruptions of pine siskins 
(S. pinus) occur, more songbirds are often found infected with, or dead from, 
salmonellosis (Bottom Right panel). 

The timing of these irregular, large-scale, facultative movements 
of irruptive bird species is not random, but rather is driven by the 
availability of tree seed cones, which function as the primary win-
ter food source for these species (9 , 12 , 13). When cones are 
limited, birds flee coniferous forests in large numbers in search of 
food. Like irruptions, cone production varies dramatically between 
years but synchronously within years across species and space in 
a phenomenon known as masting (14). Spatial synchronization 
of cone production of sympatric tree species acts to alternatively 
overwhelm (during “mast” years) or starve (during “bust” years) 
seed predators in a bottom–up trophic process that ultimately 
regulates population sizes of these animals (14, 15). In turn, these 
resource pulses in cone production across large spatial scales are 
driven by shared environmental cues: in particular, the difference 
between July temperatures 2 y and 1 y prior to cone maturation, 
a climatological metric referred to as  ΔT (16   –18). When a warm 
summer is followed by a cool summer (negative ΔT ), cone pro-
duction in many species is often limited the following year (17 ) 
(Fig. 1 ). 

Together, these ecological relationships suggest that interan-
nual temperature variation can result in a higher risk of salmo-
nellosis outbreaks by reducing cone production and triggering 
bird irruptions. Here, we aim to test the existence and strength 

of these previously hypothesized relationships linking climate, 
masting, and bird irruptions, as well as to evaluate the extent to 
which interannual variability in pine siskin irruptions drives the 
size of salmonellosis outbreaks among songbirds in North 
America. To evaluate these hypotheses simultaneously using a 
single model, we take a hierarchical Bayesian approach that inte-
grates climate, cone production, irruption, and outbreak data 
from 1980 to 2024. We then illustrate the utility of this model 
to forecast the probability of avian salmonellosis outbreaks at a 
regional scale, while accounting for multiple sources of uncer-
tainty and accommodating spatially and temporally heteroge-
nous data availability. As more birds are attracted to growing 
urban areas with increasing numbers of bird feeders (19), and 
as climatic conditions become increasingly variable over time, a 
predictive model like the one presented here can inform wildlife 
and public health agencies of future outbreak risk across the 
North American continent and provide a framework for con-
structing similar tools for other zoonoses. 

Climate Variability Drives Variation in Cone Production. 
The first component of our hierarchical model quantifies the 
relationship between climate variability and cone production. In 
line with previous work demonstrating the importance of shared 
environmental cues, we found that cone production across firs, 
spruces, and hemlocks [families Abies, Picea, and Tsuga, from 
the MASTREE+ database (20)] was positively associated with 
an increase in average maximum July temperatures [ΔT , from 
Daymet (21)] between the 2 y prior to cone maturation (median 
effect of ΔT  on change in cone production relative to the mean, 
˜ = 0.24, 89% CrI = 0.19 to 0.29, P(˜ > 0) = 1; Eq. 1). A 3 °C 
decrease in average temperatures between consecutive years 
was predicted to nearly halve local cone production compared 
to consistent summer temperatures between years (median 
predicted drop = 48.2%, 89% CrI = 41.3 to 56.3%). We also 
found strong evidence for a previously reported pattern in which 
mast years are most often followed by bust years, and vice-versa 
(median 1-y lag effect of cone production, ̃  = −0.19, 89% CrI = 
−0.25 to −0.12, p(˜ < 0) = 1; Eq. 1), such that cone production 
was predicted to be 25% lower following a year in which cone 
production was 2.5x the average (89% CrI = 16.4 to 32.3%). 
To evaluate the downstream effects of cone production on bird 
irruptions, we constructed time series of regional (western and 
eastern coniferous forests) masting estimates (SI  Appendix, 
Fig. S1 and Eq. 5) using model-estimated relationships between 
temperature and cone production and the model-estimated 
spatial structure of masting dynamics (whereby locations in 
closer proximity are more likely to exhibit similar responses). 
Regional cone production estimates were highly variable across 
years, suggesting a high degree of regional spatial synchrony 
(SI Appendix, Fig. S1). 

Limited Cone Production Triggers Bird Irruptions. Concurrent 
with the estimation of the above relationships, our hierarchical 
Bayesian model estimated the effect of regional cone production 
trends on the yearly spatial extent of irruptions of the pine siskin 
and seven other songbird species across North America using data 
from the Audubon Christmas Bird Count (CBC) (22). Because 
of apparent regional differences in irruption and masting timing 
(23, 24), we estimated relationships within regions separately. 
In line with previous evidence that irruptions are triggered by 
winter food scarcity, we found that more spatially widespread 
(hereafter, “intense”) irruptions were associated with lower 
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regional cone production (median of average cross-species effect 
of cone production on irruption intensity, western North America: 
˜°1 = −0.75, 89% CrI = −1.11 to −0.44, p(˜°1 < 0) = 1; eastern 
North America: ̃ °2 = −0.64, 89% CrI = −1.0 to −0.29, p(˜°2 < 
0) = 1; Fig. 2, SI Appendix, Fig. S2, and Eq. 6). We found little 
to no evidence that irruptions are more likely to occur after a 
nonirruption year for the typical species in western North America 
(median 1-y autoregressive effect ̃ ° 1 = −0.10, 89% CrI = −0.25 to 
0.05, p(˜° 1  < 0) = 0.87; SI Appendix, Fig. S2 and Eq. 8), but strong
evidence for a weak effect in eastern North America [median of 
cross-species effect ̃ ° 2  = −0.24, 89% CrI = −0.37 to −0.12, p(˜° 2 
< 0) = 1; SI Appendix, Fig. S2 and Eq. 8]. 

Bird Irruptions Lead to Salmonellosis Outbreaks. In contrast to 
established linkages between climate variability, cone production, 
and bird irruptions, little is known about the association between 
bird irruptions and salmonellosis outbreaks. While the pine siskin 
is known to be involved in large and recent salmonellosis outbreaks 
(7), we first sought to determine which other irruptive bird species, 
if any, are important in triggering or amplifying outbreaks. To do 
this, we calculated the frequency at which irruptive species were 
reported in outbreak events in the United States using data from 
WHISPers—a national database of wildlife disease reports (5). 
Irruptive species were identified in 85% of all winter salmonellosis 
outbreaks involving passerines in the western United States and 

Fig. 2. Cone production and salmo-
nellosis outbreaks are linked through 
pine siskin (S. pinus) irruptions. 
Irruption intensity of pine siskins is 
negatively associated with regional 
estimates of cone production (medi-
an estimates shown) in both western 
(A) and eastern North America (B) with 
estimates for the species-level effect 
shown (the solid line indicates mean 
estimated effect, with 89% credible 
interval). In turn, the probability of 
disease outbreaks (solid line, with 
89% credible interval) in the western 
United States is strongly associated 
with the intensity of pine siskin irrup-
tions (C), with a similar effect weakly 
supported in the eastern region (D). 
Solid points at the top of the plots 
represent years with outbreaks while 
open points at the bottom of the plots 
represent years without outbreaks for 
(C) and (D). The number of individual 
birds reported in salmonellosis out-
breaks in both the western (E) and 
eastern (F) United States is strongly, 
positively associated with pine siskin 
irruption intensity (solid line, with 89% 
credible intervals). D
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Fig. 3. Spatial extent and characteristics of salmonellosis outbreaks among 
passerines in the United States. Salmonellosis outbreaks were widely reported 
across the United States in both the western (blue) and eastern (orange) study 
regions classified via the United States Environmental Protection Agency’s 
ecoregions (A) from 1987 to 2024. The number of individuals reported each 
winter in regional outbreaks varied interannually (B). Irruptive species, 
especially the pine siskin (S. pinus), were reported in a high proportion of 
outbreaks in both regions (C). 

45% of those in the eastern United States between 1987 and 2024. 
Irruptive species were involved in 79% of the largest outbreaks— 
measured by the number of dead or sick individuals reported— 
across regions (≥90th percentile, n = 19). 

Pine siskins were involved in 47% of all outbreak events, 
nearly twice the rate of the next most reported species (American 
goldfinch Spinus tristis, identified in 27% of outbreaks) and 
nearly five times the rate of the second most reported irruptive 
species (evening grosbeak C. vespertinus, 10% of outbreaks; 
Fig. 3). Pine siskins were the most identified species in out-
breaks in both the western (74%) and eastern United States 
(38%, Fig. 3). Based on the close association of pine siskins 
with historical outbreaks and the species’ extensively docu-
mented importance in the outbreak of 2020–2021 (7 ), we 
chose to quantify the association between the irruption of pine 
siskins, in particular, and the frequency and size of salmonel-
losis outbreaks.           

Using our integrated Bayesian hierarchical model, we found 
that more intense pine siskin irruptions were associated with an 
increased probability of an outbreak being reported; this linkage 
was strongly supported in the west [median effect of pine siskin 
irruption intensity on outbreak likelihood,  ̃ 1    = 0.69, 89% CrI = 
0.12 to 1.34, p( ̃ 1     > 0) = 0.98; Fig. 2   and Eq. 8  ] with weaker but 
still plausible support in the east [median effect of pine siskin 
irruption intensity on outbreak likelihood, ˜2 = 0.60, 89% 

CrI = −0.28 to 1.60, p( ̃ 2    > 0) = 0.86; Fig. 2  and Eq.  8  ). In the 
west, the model-predicted probability of an outbreak rises from 
30.3% when pine siskins irruptions are relatively weak (−1.5SD 
from the mean) to 74.7% when irruptions are more intense 
(+1.5SD from the mean). In addition to this association between 
irruption intensity and the likelihood of outbreak reporting, irrup-
tion intensity was strongly associated with the size of salmonellosis 
outbreaks, measured as the total number of sick or dead individ-
uals in each region [western United States: median effect of irrup-
tion intensity on outbreak size,  ̃ 1    = 0.25, 89% CrI = 0.13 to 0.35, 
p( ̃ 1    > 0) = 1; eastern United States: median  ̃ 2    = 0.16, 89% CrI 
= 0.05 to 0.27, p( ̃ 2    > 0) = 0.99; Fig. 2  and Eq.  9  ]. As an example, 
the model-predicted probability of an outbreak in which at least 
500 individual birds (a threshold reached in 7 of 74 regional 
winters) were reported either ill or dead was 39.3% during an 
intense irruption year (irruption index +1.5SD from the mean) 
versus a 0.5% chance during a weak irruption year (−1.5SD from 
the mean) in the western United States. The effect size was similar 
in the eastern United States, with a 29.4% chance of a large out-
break during an intense irruption year compared to 2.9% during 
a weak irruption year. 

When considered together, our results demonstrate a clear 
throughline from summer climate variability in boreal forests to 
salmonellosis outbreak reports in the United States (Fig. 1 ). When 
temperature variability triggers a bust year in cone production, 
pine siskins tend to exhibit larger irruptions leading to a higher 
probability and larger predicted size of salmonellosis outbreaks. 
Given the inherent lag time of roughly 1.5 y between the trigger-
ing climate events and the resulting outbreak of salmonellosis 
among wild birds, we next evaluated the degree to which our 
statistical model could be used as a forecasting tool for future 
disease outbreaks.  

Forecasting Salmonellosis Outbreaks. When outbreaks are 
detected and reported to wildlife health agencies, officials regularly 
advise the public to take steps to mitigate risks such as temporarily 
removing bird feeders (25). Inherently, these warnings from 
public health officials and related news reports occur only after 
outbreaks begin. Proactive and accurate early warning systems of 
wildlife disease risk that are effectively used to engage the public 
can lead to better mitigation of epidemics compared to reactive 
approaches (26, 27). In line with guidance from the Centers for 
Disease Control and Prevention (CDC), reminding the public to 
regularly clean bird feeders, providing information about how to 
report and safely dispose of dead birds, and advising the removal 
of feeders during certain periods, especially when sick or dead 
birds are observed, are all examples of measures that can reduce 
epidemic intensity among birds and lower the risk of human 
spillover (7). 

Building on the statistical model highlighted above (and out-
lined in SI Appendix, Fig. S3), we developed a near-term forecast-
ing tool (hereafter referred to as the full forecasting model) that 
probabilistically estimates the risk of regional disease outbreaks 
using climate, cone production, and irruption data (SI Appendix, 
Fig. S4). These forecasts have the capacity to inform wildlife health 
agencies about the likelihood and expected size of potential out-
breaks months before they occur. With this information, agencies 
could then decide to advise members of the public to take steps 
like removing bird feeders to protect themselves, domesticated 
animals, and backyard birds from disease risks when the proba-
bility of a large outbreak rises above a given threshold. 

We evaluated the full forecasting model’s ability to predict the 
probability and size of outbreaks for upcoming winters given only 
contemporaneously available information over the last 21 y (half D
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of the study period). To do this, we used a historically informed 
baseline model that generates probabilistic forecasts based simply 
on the observed frequency of individuals affected in previous years. 
Using the continuous ranked probability skill score (CRPSS), a 
scoring algorithm traditionally used in weather forecasting (28 ), 
we found that our full forecasting model outperformed a histor-
ically informed baseline model in predicting the annual number 
of individuals reported in salmonellosis outbreaks (CRPSS = 
4.8%, SI Appendix, Table S1 and  Eqs. 10 and 11  ). Here, a score 
of 100% would be achieved if the model predicts with absolute 
certainty the exact number of individuals involved in an outbreak, 
while a score of 0% represents no improvement over the historical 
baseline model. In addition, we also tested the accuracy of our 
forecasting models in predicting the occurrence of outbreaks of 
any size (>0 individuals), large outbreaks (>100 individuals), and 
severe outbreaks (>500 individuals) using Brier scores (29 ). In 
each of these three cases, using the Brier skill score (30), the full 
forecasting model consistently outperformed the historical base-
line models [Brier skill score P(>0) = 3%, P(>100) = 10.4%, 
P(>500) = 6.1%; SI Appendix, Table S2] and vastly outperformed 
random guessing [i.e., consistent 50% predicted probability of an 
outbreak of a given size; Brier skill score P(>0) = 27%, P (>100) = 
17%, P(>500) = 66.1%; SI Appendix, Table S2 ]. 

As with all forecasting systems across disciplines, barriers exist 
for creating more accurate and precise forecasts. For our full fore-
casting model, one limiting factor to forecast accuracy and preci-
sion is the scarcity of up-to-date cone production information. In 
our historical forecast evaluation, we use cone production data 
collected in a postpublication database as if it were contemporarily 
available. However, in practice, the real-time use of this informa-
tion would depend on close communication with data collectors. 
In addition to data reporting delays, historical cone production 
data are spatially and temporally patchy (SI Appendix, Fig. S5 ). 

To determine the effect of the availability of cone production 
data on forecasting skill, we analyzed how forecast accuracy 
changed when systematically blinded to cone production infor-
mation but still provided climate data (via a data-blinded fore-
casting model). Even with this limitation, forecasts of outbreak 
size with our data-blinded forecasting model showed improvement 
over historical baseline models (CRPSS = 3.6%, SI Appendix, 
Tables S1 and S2   and Eqs.  10 and 11  ), but underperformed the 
full forecasting model. This gap in predictive accuracy suggests 
that while forecasts with minimal contemporary cone production 
data are still useful, increasing the collection of real-time, spatially 
representative data through citizen science (31) or advances in 
remote-sensing techniques (32) have the potential to dramatically 
increase forecast accuracy. 

Increasing severity and variability of climate patterns, loss of 
habitat, altered bird behavior, and changing patterns in supple-
mental feeding all have the potential to dramatically change the 
frequency and magnitude of disease outbreaks. Increasing varia-
bility in interannual temperatures under climate change may drive 
greater variation in cone production, although considerable uncer-
tainty in this area remains (18), which may ultimately result in 
larger irruptions and larger outbreaks. Loss of coniferous forest 
due to urbanization, deforestation, or wildfires may also increase 
the risk of spillover events by forcing birds into human-modified 
landscapes, similar to the patterns seen with Hendra virus infec-
tions among Australian bat populations (8). Irruptive species may 
even adapt their behavior in the long-term in response to anthro-
pogenic and climate-related changes, with unknown effects for 
disease risk. For example, because pine siskins alter their migratory 
behavior in direct response to food availability (33 ), increasing 
supplemental feeding via bird feeders could lead to the reduction 

of migratory behavior in this species, potentially either increasing 
outbreak risk by increasing local density or, alternatively, lowering 
risk due to less stress-induced immunological effects from lack of 
food (34). Quantifying the role that complex interactions between 
the abiotic and biotic environments play in disease dynamics is 
critical to understanding the ecology of common pathogens and 
related public health outcomes. This work represents a step in 
establishing a spatially explicit, process-based predictive frame-
work for salmonellosis outbreaks. In the future, this statistical 
framework could incorporate greater complexity in ecological 
processes at more precise spatial scales and be expanded to study 
how the size of avian outbreaks contributes to the risk of spillover 
into humans.   

Materials and Methods 

Data and Statistical Model Overview. We designed a single Bayesian hier-
archical model structure that integrates ecological links between climate, cone 
production, bird irruption, and disease outbreaks, and incorporates information 
from five independent data sources. A graphical representation of data sources 
and the study area is provided as SI Appendix, Fig. S1, our hypotheses and statisti-
cal modeling framework are outlined in SI Appendix, Fig. S3, and data availability 
is displayed as SI Appendix, Fig. S5. Our data come from a diverse set of sources: 
Climate data were derived from Daymet (21), tree masting time series from the 
MASTREE+ database (20), tree cover data from NASA satellite sensors (35), bird 
occurrence records from the CBC conducted by the National Audubon Society (22), 
and disease reports from the Wildlife Health Information Sharing Partnership 
event reporting system (WHISPers) from the United States Geological Survey (5). 
Our hierarchical statistical approach models all ecological processes simultane-
ously, at each level integrating information from these data sources. The model 
is then used to estimate the strength and direction of the ecological linkages 
between climate patterns, cone production, irruptions, and disease outbreaks 
while propagating the estimated uncertainty in these relationships. In general, 
and for all cases in which a parameter represents a hypothesis being tested, we 
use broad, uninformative priors centered at zero. We do not incorporate prior 
knowledge from previous studies into our prior estimates. A full list of priors is 
available in SI Appendix, Table S3. Because climate, cone production, irruptions, 
and salmonellosis outbreaks appear to show regional differences, our modeling 
framework is designed to estimate these relationships across two distinct western 
and eastern regions determined using ecoregion designations from the United 
States Environmental Protection Agency. 

Climate and Tree Cone Production. The first level of our model estimates 
local cone production (alternatively, “masting”) across North American conifer-
ous forests using spatially explicit climate, cone production, and tree cover data. 
To do this, we first divided the continent using equal-area hexagonal grid cells 
with roughly 286 km spacing using the R package dggridr (36). We chose this 
spacing to balance the percentage of cells for which we have cone production 
measures (aiming to keep this number high via larger cells) while maintain-
ing the spatial representativeness of observed cone production for the cells to 
which they belong (via smaller cells). We then filtered to include cells where at 
least 25% of land area was within one of three target Environmental Protection 
Agency level-one ecoregions dominated by conifer forests (i.e., Northwestern 
Forested Mountains, Marine West Coast Forests, or Northern Forests). Next, we 
filtered to only include cells that were overwhelmingly land (>95%). Based on 
the ecoregion most represented in each cell, we then categorized cells as either 
representing western forests (Northwestern Forested Mountains and Marine 
West Coasts Forests ecoregions) or eastern forests (Northern Forests ecoregion; 
SI Appendix, Fig. S1). We then extracted daily maximum temperatures during 
July from Daymet (21) for each of these cells for the period 1980–2023. We 
calculated the difference between the average maximum daily July temperature 
in consecutive 2-y periods (ΔT ) for each cell (i.e., average temperature in year 
t minus average temperature in year t − 1). 

We then estimated cone production of tree species with 2-y reproductive 
cycles for each cell and year from 1982 to 2024. To do this, we incorporated 
empirically measured cone production data from MASTREE+, a database that D
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compiles reproductive output information from published studies (20). We fil-
tered the MASTREE dataset to the genera with 2- y reproductive cycles: Abies 
(firs), Picea (spruces), and Tsuga (hemlocks). We focused on these species due to 
their shared reproductive timeline and the broad spatial distribution of available 
data. We excluded pines of the genus Pinus from our analysis due to poor spatial 
coverage, more complex associations between cone production and temperature 
differences during cone development, and lower interannual variation in masting 
(17). Because of the known cross-species tempor al synchronicity of cone produc-
tion (37), and the dominance of the three included genera across much of the 
study region (38), we expect data included here to be a reliable proxy for local 
cone production. In the future, the incorporation of cone production data from 
Pinus species could likely improve the explanatory power and forecasting skill 
of our model. In total, our masting dataset compiled 1,821 data points from 131 
unique time series from at least eight species (some trees were identified only to 
genus). For each time series, we standardized cone production data by dividing 
by the mean cone production of that time series, such that a transformed value 
of one represents the mean observed cone production for a given cell. To model 
local masting with a gamma distribution, we added a small scalar (0.001) to all 
local masting estimates to avoid zeros at this step but back transformed these 
values downstream (i.e., for use as the covariate mc,t−1 and estimates of regional 
masting trends, explained below). When cell-ye ar combinations had one or more 
empirical measure of cone production we averaged standardized values across 
time series. After compiling, data included in the model totaled 546 data points 
from 38 cells. Cone production data are incomplete—representing between 0% 
and 27% of cells in each year (SI Appendix, Fig. S5). To account for this, we esti-
mated local masting in cells and years without data in our Bayesian framework 
as unobserved states.

Following (17), we modeled relative local cone production ( m ) at each site 
(index c) as a function of variables previously reported to have an effect on tree 
reproductive indices: ΔT  and reproductive output from the previous year ( mt−1 ) 
using the linear predictor of cone production ( �):

�c,t = �t + � ∗ mc,t− �1 + � ∗ ΔTc,t + �c,t ∗ � ,

where � represents a year-specific inter cept, � is the effect of ΔT  on masting, and 
the terms �c,t and �� constitute a conditional autoregressive component (39) 
used to model the spatial autocorrelation in local masting between neighboring 
cells, where � �c,t is the spatial effect and � is the scale of that effect across all 
years. The term � represents the temporal autoregressive effect of masting in the 
previous year. We chose a spatial modeling approach that included estimating 
masting in unknown areas to robustly account for uncertainty at the regional level 
(i.e., resulting from missing masting information) while incorporating model- 
estimated effects of spatial autocorrelation and the effects of ΔT  on masting. 
Because many unmeasured masting values are estimated by the model, to ensure 
identifiability we set a constraint on the mean masting value across all years and 
cells such that the average masting value is constrained to be close to 1, similar to 
the soft sum-to -zer o method used to constrain spatial effects (39). Via a restrictive 
prior set on the mean of all masting values across all years, this prevents the 
model from estimating biologically unrealistic average masting values across 
the entire study period and potentially biasing coefficient estimates.

[1]

We modeled local masting m from a gamma distribution with the shape 
parameter �:

mc,t ∼ Gamma

(
�,

�

elpc,t

)
. [2]

We explored using a log-normal distribution but found a gamma distribution  
was a better fit for these data. We model local masting in the year immediately 
preceding the first year as an unknown state. To generate realistic cone production 
patterns in this year, local masting values are drawn from the same distribution 
described above with all variables in the linear predictor set to the mean observed 
over the study period. Additionally, to constrain the regional masting indices to 
realistic values in this year, the mean observed masting across the entire study 
area is drawn from a distribution determined by the model-estimated ye arly 
mean and SD in masting across all years.

Spatial cells used in this analysis contain varying amounts of forested area. For 
this analysis, we assumed the contribution of each cell to regional cone produc-
tion was proportional to the amount of forested area within that cell. To calculate 
total relative cone production across each region ( rm ), we took the yearly sum of 

local cone production across all cells weighted by the percent tree canopy cover 
(estimated in 2000) of each cell, FC:

rmr ,t =

∑
c

�
mc,t ∗ Xr ,c ∗ FCc

�
∑

c

�
Xr ,c ∗ FCc

� . [3]

To assign each region to a cell, we used X which encodes (using zeros and ones) 
whether each cell (c) belongs to a given region (r). As such, rm represents a yearly 
regional estimate of cone production relative to mean average regional masting. 
These regional masting estimates are then standardized as RM:

RMr ,t = rmr ,t −

∑
t (rmr ,t )

Nt

. [4]

By subtracting the average of all regional masting estimates (where Nt is the 
number of years) from each yearly regional masting estimate.

Tree Cone Production and Regional Irruptions. Using standardized, regional 
cone production estimates we then model the relationship between cone produc-
tion and bird irruptions. To construct bird irruption time series, we requested CBC 
data from the National Audubon Society covering the United States and Canada 
from the inception of the program to the winter ending in 2024 (22). CBC is a 
long-term monitoring pr ogram detailing the winter occurrence of birds using 
compiled accounts of species abundance via volunteer birdwatcher checklists 
collected in December or January within 24 km diameter circles. Although we 
were primarily interested in the irruption dynamics of the pine siskin (S. pinus), 
we chose to model the irruptions of seven other species known to show irruptive 
dynamics as there may be some synchronicity of these irruptions: red-br easted 
nuthatch (Sitta canadensis), evening grosbeak (Coccothraustes vespertinus), 
pine grosbeak (Pinicola enucleator), purple finch (Haemorhous purpureus), red 
crossbill (Loxia curvirostra), white- winged crossbill (Loxia leucoptera), and red-
poll (Acanthis flammea). Due to the recent reclassification of two former North 
American redpolls as a single species (40), we lumped all CBC records coded as 
hoary and common redpoll into a single species: redpoll. Because irruptions of 
multiple species occur in the same winter, the irruption dynamics of other species 
could provide additional information about the ecological relationships modeled 
here and add information to predictions of future pine siskin irruptions. Other 
North American bird species are known to exhibit irruptive behavior, including 
the pinyon jay (Gymnorhinus cyanocephalus), a pinyon pine specialist of the 
American Southwest, and the northern hawk owl (Surnia ulula), a mammalian 
and avian predator of boreal forests; however, we chose to focus on the eight 
species included here due to both their shared boreal distributions and similar 
winter diet.

For each species in both eastern and western North America, we calculated the 
spatial extent of irruptions for each year. To do this, we calculated the percent of 
unique spatial cells that a given species, including all subspecies, were observed 
in for each region during each winter season. Similar to the method used to assign 
cells to coniferous forest regions described above, we first created a grid across 
North America of equal-ar ea cells with roughly 95 km spacing using the package 
dggridr (36). We used smaller grid cells at this level due to greatly increased data 
availability (SI Appendix, Fig. S1). Each cell was assigned to either the eastern or 
western North America region based on the EPA level one ecoregion they best 
represented as a proportion of total area. Because irruptions can result in species 
expanding their range both within and outside of coniferous forests, at this level 
we expand the eastern and western regions to encompass most of North America 
(SI Appendix, Fig. S1).

Because we were primarily interested in short- term variability in irruptions, 
and to control for variable sampling effort over time (both in the number and 
locations of CBC circles being sampled, and the number of observers per cell), 
we detrended irruption time-series (i.e.,  the percentage of cells a given species 
was observed in) using smoothed splines (df = 8). We then truncated the 
data to exclude all years prior to when we had relevant cone production data 
(prior to the winter ending in 1983). We then normalized the time series for 
each species. Together, this resulted in normalized, detrended, regional- and  
species-specific irruption time series,  I (SI Appendix, Fig. S3). Because of this 
normalization and detrending, we are not accounting for the potential effects 
of long-term tr ends in pine siskin irruptions on disease outbreak probability 
or severity.D
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We modeled the relationship between irruptions (I) of each species, i  , and 
regional masting indices (RM) using a multivariate normal distribution to account 
for synchronicity in irruptions across species with a region:

Ir ,i,t ∼ MVN
(
� r +�r ,i ∗RMr ,t+�r ,i ∗ Ir ,i,t−1,Σr

)
, [5]

where � represents the intercept and � represents the effect of regional masting 
on irruptions, and � represents the autoregressive effect of irruptions in the previ-
ous winter on irruptions in the current winter. The covariance of irruptions across 
species, after accounting for shared effects of predictor variables, is represented 
by 8 × 8, region-specific covariance matrices,  Σr. We chose to use a multivariate 
normal rather than a random effects structure to allow the model to predict future 
irruption states of multiple species using information from previous years via 
estimated species-level autor egressive effects.

Species-level ef fects of regional masting on irruption size and temporal 
autoregressive effects were modeled hierarchically:

�r ,i ∼ N
(
��r

, ��r

)
, [6]

�r ,i ∼ N
(
��r

, ��r

)
, [7]

where ��  represents the cross-species ef fect of cone production on irruptions, 
and  r

r

��r
epresents the cross-species ef fect of irruptions in the previous year.

Irruptions and Disease Outbreaks. In the last level of our model, we model sal-
monellosis outbreaks as a function of pine siskin irruptions. To do this, we down-
loaded disease event data from October–April for winters ending in 1988 to 2024 
from the WHISPers database and filtered to reports with salmonellosis listed as a 
possible diagnosis from the United States (5). The WHISPers database includes 
opportunistically collected disease reports sourced from approved agencies, 
including local government wildlife departments. After filtering, we further nar-
rowed this dataset to all reports involving at least one passerine species, effectively 
excluding reports that consisted exclusively of waterfowl. We chose to exclude 
disease reports among waterfowl because the disease ecology of salmonellosis 
likely differs substantially between these two groups. We then classified disease 
reports by winter season using the midpoint of the reported event dates, except 
in a single case where we used the start of the event date because the end date 
was missing. After filtering, we georeferenced the locations of each event—either a 
list of counties and/or states—to determine whether the outbreaks occurred in the 
eastern or western region using the geographical center of each county or state 
derived from maps from the National Weather Service (available via https://www.
weather.gov/gis/Counties). We constructed regional salmonellosis time series 
by calculating the total number of individuals from all species reported as dead 
or sick in each region during each winter season. We chose aggregation at the 
regional level to mitigate the potential effects of spatial gaps in disease reporting 
that may result in false absences (e.g., a local wildlife health department does not 
consistently report disease data to WHISPers). Although most species reported 
were birds, other animals like domestic cats (Felis catus, n = 3) and one unlucky 
muskrat (Ondatra zibethicus, n = 1) were reported as being involved in winter 
salmonellosis outbreaks. Like any opportunistic dataset, it is likely that disease 
events are underreported. However, we did not observe any clear linear trends 
in outbreak frequency or severity during the study period that might suggest a 
change in reporting frequency over the study period (Fig. 3). Because pine siskin 
irruption time series are detrended, any correlation between reported outbreaks 
and irruptions are the result of interannual variation rather than long-term tr ends.

We then modeled the log-tr ansformed number of individuals (adding one 
to all values to avoid taking the log of zero) reported in all regional disease out-
breaks ( D ) using a hurdle model with a gamma distribution to account for the 
overrepresentation of zeros in regional outbreak time series (i.e., years in which 
no outbreaks were detected). We considered using a zero-inflated P oisson distri-
bution using the nontransformed data but found it a worse fit for the extremely 
right-sk ewed distribution of outbreak sizes. The first step of this model estimates 
the effect of irruptions on the probability of an outbreak of any size being reported 
as a function of pine siskin irruptions, Ir ,1,t:

P
�
Dr ,t

�
=

⎧
⎪⎨⎪⎩

𝜃 if Dr ,t =0

(1−𝜃) ∗Gamma

�
𝜆r ,

𝜆r

e𝜁 r+𝜅r∗Ir ,1,t

�
if Dr ,t >0

, [8]

� = 1 −

(
1

1+e� r+�r∗Ir ,1,t

)
, [9]

where 1 − � is the probability of the occurrence of an outbreak of any size, � is 
the intercept term, and � is the effect of pine siskin irruptions on the likelihood 
of a regional outbreak. If an outbreak does occur, the outbreak size (measured as 
the total number of individuals reported sick or dead in each region) is modeled 
as a function of pine siskin irruption size where � is the intercept, � is the effect 
of pine siskin irruptions on outbreak size, and � is the shape parameter.

Model Fit and Reporting. We fit our statistical models, including the forecasting 
models described below, using the package rstan (41). For the hypothesis testing 
model, we ran our model with 8,000 iterations total, 2,000 warm- up iterations, 
and a thin factor of two. For the forecasting models (see below), we ran our model 
with 8,000 iterations total, 2,000 warm-up  iterations, and a thin factor of two 
except for the two least informed models which needed more iterations (14,000) 
to pass model checks. We implemented thinning due to the excessive space 
requirements (~1.5 GB for each of the 43 models fit). All model parameters were 
checked for convergence, with a R̂ ≤ 1.03 and effective sample sizes ≥ 400, and 
for problematic posterior geometry indicated via divergences or energy warnings. 
The posterior predictive overlap was assessed using MCMCvis (42) and is reported 
in SI Appendix, Table S3 and Dataset S1. For our hypothesis testing model, we 
also checked for problematic parameter correlations via the package shinystan 
(43), and observed no issues.

In reporting our results, we use the “language of evidence” framework to 
avoid traditional and problematic cutoffs for statistical significance (44). We report 
89% credible intervals in line with (45), and the proportion of the posterior that 
is greater than (p(PARAMETER>0) or less (p(PARAMETER<0) than zero for each 
parameter.

Forecast Generation and Analysis. We used our statistical model to predict 
future conditions by modeling the upcoming state of cone production, irruptions, 
and outbreaks as unknown states. Functionally, the model predicts future cone 
production using known climate data and estimates of local masting from previ-
ous years, as well as a yearly intercept value �t drawn from the model- estimated 
distribution N(�� , �� ).

To determine whether our hypothesis- testing model was effective at fore-
casting, we fit a series of independent, identically structured statistical models 
(hereafter, “full forecasting model”) using 21 different historical datasets, each 
with successively longer time series. This predictive evaluation simulates how 
the model would have performed if it was used to make predictions starting  
21 y ago (starting at the midpoint of the study period), updated each year with 
new data, and then evaluated the following year using observed data. Although 
we focused on predicting upcoming outbreaks in the near- term (with an approxi-
mate 6-mo le ad time), our model could be used to predict outbreaks farther into 
the future (likely with declining efficacy). In addition, we also trained models using 
the same methodology, except that models were blinded to contemporary cone 
production information (hereafter, “blinded forecasting model”).

To assess the value of the full and blinded forecasting models, we compared 
probabilistic model-pr edicted irruption and outbreak size distributions to those 
generated via a probabilistic historical null model (“historical model”). The histor-
ical model simply assumes that the probability of an irruption and outbreak of a 
given size is equivalent to the frequency at which those events have occurred in 
previous years (i.e., no predictor variables are used). Using a measure of probabil-
istic forecasts called the continuous ranked probability score, or CRPS (46), using 
the r package scoringRules (47), we scored each forecast of regional irruptions 
and disease outbreak size for the historical, blinded, and full models. The CRPS 
score penalizes forecasts both for being imprecise (i.e., uncertain) and for being 
inaccurate (i.e., biased). We then calculated the CRPSS of the full and blinded 
model by comparing the sum of scores across the 21 y of forecasts to those gen-
erated by the historical model (48):

CRPSSfull = 1 −

∑
CRPSfull∑

CRPShistorical
, [10]

CRPSSblinded = 1 −

∑
CRPSblinded∑
CRPShistorical

. [11]
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For reporting purposes, we then convert CRPSS to a percentage (SI Appendix, 
Table S1). Skill scores provide a measure of the relative accuracy and preci-
sion of a probabilistic forecast compared to an existing benchmark, with a 
positive value representing an improvement. To represent the performance 
of our model-generated forecasts, we provide a graphical representation of 
the model-estimated likelihoods of outbreak of different sizes over the last 
21 y (SI Appendix, Fig. S4). Because some parties may be interested in the 
predictive accuracy of our forecasting model to predict outbreaks of various 
sizes—for example, an agency may only want to send a warning to the public 
if the probability of a severe outbreak is high—we provide an assessment of 
the accuracy of the historical baseline model, the blinded model, and the full 
forecasting model using Brier scores (29). We compare the performance of each 
model using the Brier skill score (30) and report these results in SI Appendix, 
Table S2. 

Data, Materials, and Software Availability. All code needed to conduct 
this analysis and reproduce all figures is available on GitHub (https://github. 
com/bentonelli/Climate_to_Salmonella_PNAS) (49) and archived on Zenodo 

(https://doi.org/10.5281/zenodo.17914985) (50). Our analysis relies on data 
from third parties, and we do not have permission to publish these datasets 
in their original form. We provide instructions for how interested parties can 
request and access this data in the README file. 
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