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Salmonellosis is a common bacterial infection that can lead to severe illness and death
in humans as well as domesticated and wild animals. In bird populations, salmonel-
losis outbreaks are temporally irregular but occur simultaneously across large spatial
extents, frequently leading to widespread avian mortality with occasional spillover
to humans. Here, we test the hypothesis that avian salmonellosis epidemics result
from a cascade of ecological processes triggered by climate variability in coniferous
forests. Building on well-evidenced ecological mechanisms, we find strong evidence for
multiyear causal links between temperature cues that drive substantial “boom-bust”
cycles in tree cone production across North America, the subsequent irruptions of
seed-eating birds, and, finally, the eventual occurrence and severity of avian salmo-
nellosis outbreaks in the United States. By using an integrated, multilevel Bayesian
statistical model as a predictive tool to forecast future bird irruptions and disease
outbreaks, we demonstrate that our methods can be employed as an early warning
system for future epidemics, potentially mitigating outbreak severity among birds
and lowering the risk of zoonotic spillover events by encouraging measures such as
the temporary cessation of bird feeding ahead of high-risk periods.

resource pulse | one health | ecological trap | masting | bird migration

Understanding the causes of zoonotic outbreaks is a priority for global health and wildlife
conservation, yet the ecology of many familiar zoonotic pathogens remains understudied
(1, 2). Salmonellosis, a common and widespread disease in wild and domesticated animals,
as well as humans, is caused by infection with bacteria from the genus Salmonella and
spread primarily via a fecal-oral route (3, 4). Periodic salmonellosis outbreaks have been
documented in North American songbirds for at least 40 y (4-6), with outbreaks often
killing thousands of birds and occasionally spilling over to humans through contact with
wild birds and bird feeders (7). Like other zoonoses, the likelihood of salmonellosis out-
breaks in birds is determined by a complex combination of factors, including the distri-
bution and movement of host animals, the competence of a given species to harbor and
transmit pathogens, and the probability of contact between infected individuals (1, 8).
Each of these factors can be influenced by variability in environmental conditions, which
might ultimately regulate the probability of outbreak emergence in wildlife and related
spillover into human populations (1, 8). Although little is known about the drivers of
these periodic avian salmonellosis outbreaks, evidence spread across ecological disciplines
suggests a complex cascade of events is responsible (Fig. 1).

Salmonellosis outbreaks among songbirds are especially common in a subset of
seed-eating finch species (6). Many of these species share the uncommon life history
trait of exhibiting “irruptions,” in which large numbers of individuals sporadically move
from high-latitude and high-elevation coniferous forests to more southerly and lower
elevation areas in some winters, resulting in substantial localized increases in the number
of individual birds in these areas (9). The pine siskin (Spinus pinus) is one such finch
species that appears to have a particularly strong association with large salmonellosis
outbreaks (10), including involvement in a deadly avian epidemic in the winter of
2020-2021 that led to human spillover and subsequent hospitalizations (7). Why pine
siskins, in particular, experience high susceptibility to salmonellosis compared to other
songbirds remains unclear (6), though their large population size and socially gregarious
behavior (10) may contribute. Evidence from other migratory species suggests that the
demands of long-distance movements like those that pine siskins undergo can often
come at the expense of weakened immune function (11). The rapid dispersal of a high
number of social, immunologically stressed irruptive migrants could set the stage for
simultaneous epidemics occurring across large spatial extents. These risks may be espe-
cially heightened at areas that attract high densities of food-stressed individuals, such

as bird feeders (4).
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Fig. 1. A climate-mediated ecological cascade leads to salmonellosis
outbreaks in the United States. Temperature differences in successive
summers are associated with differences in tree cone production in high-
elevation and high-latitude forests (Top row), such that a warm summer
followed by a cold summer is associated with a drop in cone production the
following year (Top Right panel). Cone production is negatively associated with
facultative bird migrations (irruptions) of eight seed-eating species (Middle
row), such that when cone numbers are low, birds are more likely to irrupt
in large numbers (Middle row, Right panel). When irruptions of pine siskins
(S. pinus) occur, more songbirds are often found infected with, or dead from,
salmonellosis (Bottom Right panel).

The timing of these irregular, large-scale, facultative movements
of irruptive bird species is not random, but rather is driven by the
availability of tree seed cones, which function as the primary win-
ter food source for these species (9, 12, 13). When cones are
limited, birds flee coniferous forests in large numbers in search of
food. Like irruptions, cone production varies dramatically between
years but synchronously within years across species and space in
a phenomenon known as masting (14). Spatial synchronization
of cone production of sympatric tree species acts to alternatively
overwhelm (during “mast” years) or starve (during “bust” years)
seed predators in a bottom—up trophic process that ultimately
regulates population sizes of these animals (14, 15). In turn, these
resource pulses in cone production across large spatial scales are
driven by shared environmental cues: in particular, the difference
between July temperatures 2 y and 1 y prior to cone maturation,
a climatological metric referred to as A7 (16-18). When a warm
summer is followed by a cool summer (negative AT"), cone pro-
duction in many species is often limited the following year (17)
(Fig. 1).

Together, these ecological relationships suggest that interan-
nual temperature variation can result in a higher risk of salmo-
nellosis outbreaks by reducing cone production and triggering
bird irruptions. Here, we aim to test the existence and strength
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of these previously hypothesized relationships linking climate,
masting, and bird irruptions, as well as to evaluate the extent to
which interannual variability in pine siskin irruptions drives the
size of salmonellosis outbreaks among songbirds in North
America. To evaluate these hypotheses simultaneously using a
single model, we take a hierarchical Bayesian approach that inte-
grates climate, cone production, irruption, and outbreak data
from 1980 to 2024. We then illustrate the utility of this model
to forecast the probability of avian salmonellosis outbreaks at a
regional scale, while accounting for multiple sources of uncer-
tainty and accommodating spatially and temporally heteroge-
nous data availability. As more birds are attracted to growing
urban areas with increasing numbers of bird feeders (19), and
as climatic conditions become increasingly variable over time, a
predictive model like the one presented here can inform wildlife
and public health agencies of future outbreak risk across the
North American continent and provide a framework for con-
structing similar tools for other zoonoses.

Climate Variability Drives Variation in Cone Production.
The first component of our hierarchical model quantifies the
relationship between climate variability and cone production. In
line with previous work demonstrating the importance of shared
environmental cues, we found that cone production across firs,
spruces, and hemlocks [families Abies, Picea, and Tsuga, from
the MASTREE+ database (20)] was positively associated with
an increase in average maximum July temperatures [A 7, from
Daymet (21)] between the 2 y prior to cone maturation (median
effect of AT on change in cone production relative to the mean,
0 =0.24,89% Crl = 0.19 t0 0.29, P(@ > 0) = 15 Eq. 1). A3 °C
decrease in average temperatures between consecutive years
was predicted to nearly halve local cone production compared
to consistent summer temperatures between years (median
predicted drop = 48.2%, 89% Crl = 41.3 to 56.3%). We also
found strong evidence for a previously reported pattern in which
mast years are most often followed by bust years, and vice-versa
(median 1-y lag effect of cone production, v=-0.19, 89% Crl =
-0.25t0 -0.12, p(v < 0) = 1; Eq. 1), such that cone production
was predicted to be 25% lower following a year in which cone
production was 2.5x the average (89% Crl = 16.4 to 32.3%).
To evaluate the downstream effects of cone production on bird
irruptions, we constructed time series of regional (western and
eastern coniferous forests) masting estimates (S/ Appendix,
Fig. S1 and Eq. 5) using model-estimated relationships between
temperature and cone production and the model-estimated
spatial structure of masting dynamics (whereby locations in
closer proximity are more likely to exhibit similar responses).
Regional cone production estimates were highly variable across
years, suggesting a high degree of regional spatial synchrony
(SI Appendix, Fig. S1).

Limited Cone Production Triggers Bird Irruptions. Concurrent
with the estimation of the above relationships, our hierarchical
Bayesian model estimated the effect of regional cone production
trends on the yearly spatial extent of irruptions of the pine siskin
and seven other songbird species across North America using data
from the Audubon Christmas Bird Count (CBC) (22). Because
of apparent regional differences in irruption and masting timing
(23, 24), we estimated relationships within regions separately.
In line with previous evidence that irruptions are triggered by
winter food scarcity, we found that more spatially widespread
(hereafter, “intense”) irruptions were associated with lower
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regional cone production (median of average cross-species effect
of cone production on irruption intensity, western North America:
Hepy =-0.75,89% Crl = -1.11 to -0.44, p(u,,, < 0) = 1; eastern
North America: y,,, = -0.64, 89% Crl = -1.0 t0 -0.29, p(y,,, <
0) = 1; Fig. 2, SI Appendix, Fig. S2, and Eq. 6). We found little
to no evidence that irruptions are more likely to occur after a
nonirruption year for the typical species in western North America
(median 1-y autoregressive effect p,, = -0.10, 89% Crl = -0.25 to
0.05, p(/t,,1 < 0) = 0.87; SI Appendix, Fig. S2 and Eq. 8), but strong
evidence for a weak effect in eastern North America [median of
cross-species effect p,, = -0.24, 89% Crl = -0.37 t0 -0.12, p(u,,,
< 0) = 1; SI Appendix, Fig. S2 and Eq. 8].

Bird Irruptions Lead to Salmonellosis Outbreaks. In contrast to
established linkages between climate variability, cone production,
and bird irruptions, little is known about the association between
bird irruptions and salmonellosis outbreaks. While the pine siskin
is known to be involved in large and recent salmonellosis outbreaks
(7), we first sought to determine which other irruptive bird species,
if any, are important in triggering or amplifying outbreaks. To do
this, we calculated the frequency at which irruptive species were
reported in outbreak events in the United States using data from
WHISPers—a national database of wildlife disease reports (5).
Irruptive species were identified in 85% of all winter salmonellosis
outbreaks involving passerines in the western United States and
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Fig. 3. Spatial extent and characteristics of salmonellosis outbreaks among
passerines in the United States. Salmonellosis outbreaks were widely reported
across the United States in both the western (blue) and eastern (orange) study
regions classified via the United States Environmental Protection Agency's
ecoregions (A) from 1987 to 2024. The number of individuals reported each
winter in regional outbreaks varied interannually (B). Irruptive species,
especially the pine siskin (S. pinus), were reported in a high proportion of
outbreaks in both regions (C).

45% of those in the eastern United States between 1987 and 2024.
Irruptive species were involved in 79% of the largest outbreaks—
measured by the number of dead or sick individuals reported—
across regions (290th percentile, n = 19).

Pine siskins were involved in 47% of all outbreak events,
nearly twice the rate of the next most reported species (American
goldfinch Spinus tristis, identified in 27% of outbreaks) and
nearly five times the rate of the second most reported irruptive
species (evening grosbeak C. vespertinus, 10% of outbreaks;
Fig. 3). Pine siskins were the most identified species in out-
breaks in both the western (74%) and eastern United States
(38%, Fig. 3). Based on the close association of pine siskins
with historical outbreaks and the species’ extensively docu-
mented importance in the outbreak of 2020-2021 (7), we
chose to quantify the association between the irruption of pine
siskins, in particular, and the frequency and size of salmonel-
losis outbreaks.

Using our integrated Bayesian hierarchical model, we found
that more intense pine siskin irruptions were associated with an
increased probability of an outbreak being reported; this linkage
was strongly supported in the west [median effect of pine siskin
irruption intensity on outbreak likelihood, f; = 0.69, 89% CrI =
0.12 to 1.34, p(f; > 0) = 0.98; Fig. 2 and Eq. 8] with weaker but
still plausible support in the east [median effect of pine siskin
irruption intensity on outbreak likelihood, f#, = 0.60, 89%
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Crl = -0.28 to 1.60, p(f, > 0) = 0.86; Fig. 2 and Eq. 8). In the
west, the model-predicted probability of an outbreak rises from
30.3% when pine siskins irruptions are relatively weak (-1.55D
from the mean) to 74.7% when irruptions are more intense
(+1.5SD from the mean). In addition to this association between
irruption intensity and the likelihood of outbreak reporting, irrup-
tion intensity was strongly associated with the size of salmonellosis
outbreaks, measured as the total number of sick or dead individ-
uals in each region [western United States: median effect of irrup-
tion intensity on outbreak size, k' = 0.25, 89% Crl = 0.13 t0 0.35,
p(ic; > 0) = 1; eastern United States: median k', = 0.16, 89% Crl
=0.05t0 0.27, p(k, > 0) = 0.99; Fig. 2 and Eq. 9]. As an example,
the model-predicted probability of an outbreak in which at least
500 individual birds (a threshold reached in 7 of 74 regional
winters) were reported either ill or dead was 39.3% during an
intense irruption year (irruption index +1.5SD from the mean)
versus a 0.5% chance during a weak irruption year (-1.5SD from
the mean) in the western United States. The effect size was similar
in the eastern United States, with a 29.4% chance of a large out-
break during an intense irruption year compared to 2.9% during
a weak irruption year.

When considered together, our results demonstrate a clear
throughline from summer climate variability in boreal forests to
salmonellosis outbreak reports in the United States (Fig. 1). When
temperature variability triggers a bust year in cone production,
pine siskins tend to exhibit larger irruptions leading to a higher
probability and larger predicted size of salmonellosis outbreaks.
Given the inherent lag time of roughly 1.5 y between the trigger-
ing climate events and the resulting outbreak of salmonellosis
among wild birds, we next evaluated the degree to which our
statistical model could be used as a forecasting tool for future
disease outbreaks.

Forecasting Salmonellosis Outbreaks. When outbreaks are
detected and reported to wildlife health agencies, officials regularly
advise the public to take steps to mitigate risks such as temporarily
removing bird feeders (25). Inherently, these warnings from
public health officials and related news reports occur only after
outbreaks begin. Proactive and accurate early warning systems of
wildlife disease risk that are effectively used to engage the public
can lead to better mitigation of epidemics compared to reactive
approaches (26, 27). In line with guidance from the Centers for
Disease Control and Prevention (CDC), reminding the public to
regularly clean bird feeders, providing information about how to
report and safely dispose of dead birds, and advising the removal
of feeders during certain periods, especially when sick or dead
birds are observed, are all examples of measures that can reduce
epidemic intensity among birds and lower the risk of human
spillover (7).

Building on the statistical model highlighted above (and out-
lined in 87 Appendix, Fig. S3), we developed a near-term forecast-
ing tool (hereafter referred to as the full forecasting model) that
probabilistically estimates the risk of regional disease outbreaks
using climate, cone production, and irruption data (57 Appendix,
Fig. S4). These forecasts have the capacity to inform wildlife health
agencies about the likelihood and expected size of potential out-
breaks months before they occur. With this information, agencies
could then decide to advise members of the public to take steps
like removing bird feeders to protect themselves, domesticated
animals, and backyard birds from disease risks when the proba-
bility of a large outbreak rises above a given threshold.

We evaluated the full forecasting model’s ability to predict the
probability and size of outbreaks for upcoming winters given only
contemporaneously available information over the last 21 y (half
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of the study period). To do this, we used a historically informed
baseline model that generates probabilistic forecasts based simply
on the observed frequency of individuals affected in previous years.
Using the continuous ranked probability skill score (CRPSS), a
scoring algorithm traditionally used in weather forecasting (28),
we found that our full forecasting model outperformed a histor-
ically informed baseline model in predicting the annual number
of individuals reported in salmonellosis outbreaks (CRPSS =
4.8%, SI Appendix, Table S1 and Eqs. 10 and 11). Here, a score
of 100% would be achieved if the model predicts with absolute
certainty the exact number of individuals involved in an outbreak,
while a score of 0% represents no improvement over the historical
baseline model. In addition, we also tested the accuracy of our
forecasting models in predicting the occurrence of outbreaks of
any size (>0 individuals), large outbreaks (>100 individuals), and
severe outbreaks (>500 individuals) using Brier scores (29). In
cach of these three cases, using the Brier skill score (30), the full
forecasting model consistently outperformed the historical base-
line models [Brier skill score P(>0) = 3%, P(>100) = 10.4%,
P(>500) = 6.1%; SI Appendix, Table S2] and vastly outperformed
random guessing [i.e., consistent 50% predicted probability of an
outbreak of a given size; Brier skill score P(>0) = 27%, P(>100) =
17%, P(>500) = 66.1%; SI Appendix, Table S2].

As with all forecasting systems across disciplines, barriers exist
for creating more accurate and precise forecasts. For our full fore-
casting model, one limiting factor to forecast accuracy and preci-
sion is the scarcity of up-to-date cone production information. In
our historical forecast evaluation, we use cone production data
collected in a postpublication database as if it were contemporarily
available. However, in practice, the real-time use of this informa-
tion would depend on close communication with data collectors.
In addition to data reporting delays, historical cone production
data are spatially and temporally patchy (S Appendix, Fig. S5).

To determine the effect of the availability of cone production
data on forecasting skill, we analyzed how forecast accuracy
changed when systematically blinded to cone production infor-
mation but still provided climate data (via a data-blinded fore-
casting model). Even with this limitation, forecasts of outbreak
size with our data-blinded forecasting model showed improvement
over historical baseline models (CRPSS = 3.6%, SI Appendix,
Tables S1 and S2 and Eqgs. 10 and 11), but underperformed the
full forecasting model. This gap in predictive accuracy suggests
that while forecasts with minimal contemporary cone production
data are still useful, increasing the collection of real-time, spatially
representative data through citizen science (31) or advances in
remote-sensing techniques (32) have the potential to dramatically
increase forecast accuracy.

Increasing severity and variability of climate patterns, loss of
habitat, altered bird behavior, and changing patterns in supple-
mental feeding all have the potential to dramatically change the
frequency and magnitude of disease outbreaks. Increasing varia-
bility in interannual temperatures under climate change may drive
greater variation in cone production, although considerable uncer-
tainty in this area remains (18), which may ultimately result in
larger irruptions and larger outbreaks. Loss of coniferous forest
due to urbanization, deforestation, or wildfires may also increase
the risk of spillover events by forcing birds into human-modified
landscapes, similar to the patterns seen with Hendra virus infec-
tions among Australian bat populations (8). Irruptive species may
even adapt their behavior in the long-term in response to anthro-
pogenic and climate-related changes, with unknown effects for
disease risk. For example, because pine siskins alter their migratory
behavior in direct response to food availability (33), increasing
supplemental feeding via bird feeders could lead to the reduction
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of migratory behavior in this species, potentially either increasing
outbreak risk by increasing local density or, alternatively, lowering
risk due to less stress-induced immunological effects from lack of
food (34). Quantifying the role that complex interactions between
the abiotic and biotic environments play in disease dynamics is
critical to understanding the ecology of common pathogens and
related public health outcomes. This work represents a step in
establishing a spatially explicit, process-based predictive frame-
work for salmonellosis outbreaks. In the future, this statistical
framework could incorporate greater complexity in ecological
processes at more precise spatial scales and be expanded to study
how the size of avian outbreaks contributes to the risk of spillover
into humans.

Materials and Methods

Data and Statistical Model Overview. We designed a single Bayesian hier-
archical model structure that integrates ecological links between climate, cone
production, bird irruption, and disease outbreaks, and incorporates information
from five independent data sources. A graphical representation of data sources
and the study area is provided as S/ Appendix, Fig. S1, our hypotheses and statisti-
cal modeling framework are outlined in S/ Appendix, Fig. S3, and data availability
is displayed as SI Appendix, Fig. S5. Our data come from a diverse set of sources:
Climate data were derived from Daymet (21), tree masting time series from the
MASTREE+ database (20), tree cover data from NASA satellite sensors (35), bird
occurrence records from the CBC conducted by the National Audubon Society (22),
and disease reports from the Wildlife Health Information Sharing Partnership
event reporting system (WHISPers) from the United States Geological Survey (5).
Our hierarchical statistical approach models all ecological processes simultane-
ously, at each level integrating information from these data sources. The model
is then used to estimate the strength and direction of the ecological linkages
between climate patterns, cone production, irruptions, and disease outbreaks
while propagating the estimated uncertainty in these relationships. In general,
and for all cases in which a parameter represents a hypothesis being tested, we
use broad, uninformative priors centered at zero. We do not incorporate prior
knowledge from previous studies into our prior estimates. A full list of priors is
available in S/ Appendix, Table S3. Because climate, cone production, irruptions,
and salmonellosis outbreaks appear to show regional differences, our modeling
framework is designed to estimate these relationships across two distinct western
and eastern regions determined using ecoregion designations from the United
States Environmental Protection Agency.

Climate and Tree Cone Production. The first level of our model estimates
local cone production (alternatively, “masting”) across North American conifer-
ous forests using spatially explicit climate, cone production, and tree cover data.
To do this, we first divided the continent using equal-area hexagonal grid cells
with roughly 286 km spacing using the R package dggridr (36). We chose this
spacing to balance the percentage of cells for which we have cone production
measures (aiming to keep this number high via larger cells) while maintain-
ing the spatial representativeness of observed cone production for the cells to
which they belong (via smaller cells). We then filtered to include cells where at
least 25% of land area was within one of three target Environmental Protection
Agency level-one ecoregions dominated by conifer forests (i.e., Northwestern
Forested Mountains, Marine West Coast Forests, or Northern Forests). Next, we
filtered to only include cells that were overwhelmingly land (>95%). Based on
the ecoregion most represented in each cell, we then categorized cells as either
representing western forests (Northwestern Forested Mountains and Marine
West Coasts Forests ecoregions) or eastern forests (Northern Forests ecoregion;
Sl Appendix, Fig. S1). We then extracted daily maximum temperatures during
July from Daymet (21) for each of these cells for the period 1980-2023. We
calculated the difference between the average maximum daily July temperature
in consecutive 2-y periods (AT) for each cell (i.e., average temperature in year
t minus average temperature in yeart — ).

We then estimated cone production of tree species with 2-y reproductive
cycles for each cell and year from 1982 to 2024. To do this, we incorporated
empirically measured cone production data from MASTREE+, a database that
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compiles reproductive output information from published studies (20). We fil-
tered the MASTREE dataset to the genera with 2-y reproductive cycles: Abies
(firs), Picea (spruces), and Tsuga (hemlocks). We focused on these species due to
their shared reproductive timeline and the broad spatial distribution of available
data. We excluded pines of the genus Pinus from our analysis due to poor spatial
coverage, more complex associations between cone production and temperature
differences during cone development, and lower interannual variation in masting
(17). Because of the known cross-species temporal synchronicity of cone produc-
tion (37), and the dominance of the three included genera across much of the
study region (38), we expect data included here to be a reliable proxy for local
cone production. In the future, the incorporation of cone production data from
Pinus species could likely improve the explanatory power and forecasting skill
of ourmodel. In total, our masting dataset compiled 1,821 data points from 131
unique time series from at least eight species (some trees were identified only to
genus). For each time series, we standardized cone production data by dividing
by the mean cone production of that time series, such that a transformed value
of one represents the mean observed cone production for a given cell. To model
local masting with a gamma distribution, we added a small scalar (0.001) to all
local masting estimates to avoid zeros at this step but back transformed these
values downstream (i.e., for use as the covariate m_,_,and estimates of regional
masting trends, explained below). When cell-year combinations had one or more
empirical measure of cone production we averaged standardized values across
time series. After compiling, data included in the model totaled 546 data points
from 38 cells. Cone production data are incomplete-representing between 0%
and 27% of cells in each year (SI Appendix, Fig. S5). To account for this, we esti-
mated local masting in cells and years without data in our Bayesian framework
as unobserved states.

Following (17), we modeled relative local cone production (m) at each site
(index c) as a function of variables previously reported to have an effect on tree
reproductive indices: AT and reproductive output from the previous year (m,_,)
using the linear predictor of cone production (&):

Ep=oprvaEmy  +0% AT+, 0y, [1]

where & represents a year-specific intercept, @ is the effect of AT on masting, and
the terms ¢, , and o, constitute a conditional autoregressive component (39)
used to model the spatial autocorrelation in local masting between neighboring
cells, where ¢, , is the spatial effect and o, is the scale of that effect across all
years.The term v represents the temporal autoregressive effect of masting in the
previous year. We chose a spatial modeling approach that included estimating
masting in unknown areas to robustly account for uncertainty at the regional level
(i.e., resulting from missing masting information) while incorporating model-
estimated effects of spatial autocorrelation and the effects of AT on masting.
Because many unmeasured masting values are estimated by the model, to ensure
identifiability we seta constraint on the mean masting value across all years and
cells such that the average masting value is constrained to be close to 1, similar to
the soft sum-to-zero method used to constrain spatial effects (39). Via a restrictive
prior set on the mean of all masting values across all years, this prevents the
model from estimating biologically unrealistic average masting values across
the entire study period and potentially biasing coefficient estimates.

We modeled local masting m from a gamma distribution with the shape
parameter v:

M., ~ Gamma (1), L) (2]
! e/Pc,r

We explored using a log-normal distribution but found a gamma distribution
was a better fit for these data. We model local masting in the year immediately
preceding the firstyear as an unknown state.To generate realistic cone production
patterns in this year, local masting values are drawn from the same distribution
described above with all variables in the linear predictor set to the mean observed
over the study period. Additionally, to constrain the regional masting indices to
realistic values in this year, the mean observed masting across the entire study
area is drawn from a distribution determined by the model-estimated yearly
mean and SD in masting across all years.

Spatial cells used in this analysis contain varying amounts of forested area. For
this analysis, we assumed the contribution of each cell to regional cone produc-
tion was proportional to the amount of forested area within that cell. To calculate
total relative cone production across each region (rm), we took the yearly sum of
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local cone production across all cells weighted by the percent tree canopy cover
(estimated in 2000) of each cell, FC:

Z( (mf,t *Xf,c * FCC)
Zc (Xr,c * FCC)

To assign each region to a cell, we used X which encodes (using zeros and ones)
whether each cell (c) belongs to a given region (r). As such, rmrepresents a yearly
regional estimate of cone production relative to mean average regional masting.
These regional masting estimates are then standardized as RM:

2idrm;)
-

m,, =

3]

RM,, = rm,, (4]
By subtracting the average of all regional masting estimates (where N, is the
number of years) from each yearly regional masting estimate.

Tree Cone Production and Regional Irruptions. Using standardized, regional
cone production estimates we then model the relationship between cone produc-
tion and bird irruptions. To construct bird irruption time series, we requested CBC
data from the National Audubon Society covering the United States and Canada
from the inception of the program to the winter ending in 2024 (22). CBCis a
long-term monitoring program detailing the winter occurrence of birds using
compiled accounts of species abundance via volunteer birdwatcher checklists
collected in December or January within 24 km diameter circles. Although we
were primarily interested in the irruption dynamics of the pine siskin (S. pinus),
we chose to model the irruptions of seven other species known to show irruptive
dynamics as there may be some synchronicity of these irruptions: red-breasted
nuthatch (Sitta canadensis), evening grosheak (Coccothraustes vespertinus),
pine grosheak (Pinicola enucleator), purple finch (Haemorhous purpureus), red
crosshill (Loxia curvirostra), white-winged crossbill (Loxia leucoptera), and red-
poll (Acanthis flammea). Due to the recent reclassification of two former North
American redpolls as a single species (40), we lumped all CBC records coded as
hoary and common redpoll into a single species: redpoll. Because irruptions of
multiple species occur in the same winter, the irruption dynamics of other species
could provide additional information about the ecological relationships modeled
here and add information to predictions of future pine siskin irruptions. Other
North American bird species are known to exhibit irruptive behavior, including
the pinyon jay (Gymnorhinus cyanocephalus), a pinyon pine specialist of the
American Southwest, and the northern hawk owl (Surnia ulula), a mammalian
and avian predator of boreal forests; however, we chose to focus on the eight
species included here due to both their shared boreal distributions and similar
winter diet.

For each species in both eastern and western North America, we calculated the
spatial extent of irruptions for each year. To do this, we calculated the percent of
unique spatial cells that a given species, including all subspecies, were observed
infor each region during each winter season. Similar to the method used to assign
cells to coniferous forest regions described above, we first created a grid across
North America of equal-area cells with roughly 95 km spacing using the package
dggridr(36). We used smaller grid cells at this level due to greatly increased data
availability (S/ Appendix, Fig. S1). Each cell was assigned to either the eastern or
western North America region based on the EPA level one ecoregion they best
represented as a proportion of total area. Because irruptions can result in species
expanding their range both within and outside of coniferous forests, at this level
we expand the eastern and western regions to encompass most of North America
(51 Appendix, Fig. S1).

Because we were primarily interested in short-term variability in irruptions,
and to control for variable sampling effort over time (both in the number and
locations of CBC circles being sampled, and the number of observers per cell),
we detrended irruption time-series (i.e., the percentage of cells a given species
was observed in) using smoothed splines (df = 8). We then truncated the
data to exclude all years prior to when we had relevant cone production data
(prior to the winter ending in 1983). We then normalized the time series for
each species. Together, this resulted in normalized, detrended, regional- and
species-specific irruption time series, I (S Appendix, Fig. S3). Because of this
normalization and detrending, we are not accounting for the potential effects
of long-term trends in pine siskin irruptions on disease outbreak probability
or severity.

pnas.org
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We modeled the relationship between irruptions (/) of each species, i, and
regional masting indices (RM) using a multivariate normal distribution to account
for synchronicity in irruptions across species with a region:

lr,/‘,r ~ MVN(Y! +wr,i * RMI,t + ’7/,/ * lr,f,r—1 U Zr)' [5]

wherey represents the intercept and w represents the effect of regional masting
onirruptions, and 5 represents the autoregressive effect of irruptions in the previ-
ous winter on irruptions in the current winter. The covariance of irruptions across
species, after accounting for shared effects of predictor variables, is represented
by 8 x 8, region-specific covariance matrices, Z,. We chose to use a multivariate
normal rather than a random effects structure to allow the model to predict future
irruption states of multiple species using information from previous years via
estimated species-level autoregressive effects.

Species-level effects of regional masting on irruption size and temporal
autoregressive effects were modeled hierarchically:

®,; ~ N(”w,' O'w’), [6]
n~N(wy,.0,), [7]

where y,, represents the cross-species effect of cone production on inruptions,
and p,, represents the cross-species effect of irruptions in the previous year.

Irruptions and Disease Outbreaks. In the last level of our model, we model sal-
monellosis outbreaks as a function of pine siskin irruptions. To do this, we down-
loaded disease event data from October-April for winters ending in 1988 to 2024
from the WHISPers database and filtered to reports with salmonellosis listed as a
possible diagnosis from the United States (5). The WHISPers database includes
opportunistically collected disease reports sourced from approved agencies,
including local government wildlife departments. After filtering, we further nar-
rowed this dataset to all reports involving at least one passerine species, effectively
excluding reports that consisted exclusively of waterfowl. We chose to exclude
disease reports among waterfowl because the disease ecology of salmonellosis
likely differs substantially between these two groups. We then classified disease
reports by winter season using the midpoint of the reported event dates, except
inasingle case where we used the start of the event date because the end date
was missing. After filtering, we georeferenced the locations of each event-eithera
list of counties and/or states—to determine whether the outbreaks occurred in the
eastern or western region using the geographical center of each county or state
derived from maps from the National Weather Service (available via https://www.
weather.gov/gis/Counties). We constructed regional salmonellosis time series
by calculating the total number of individuals from all species reported as dead
or sick in each region during each winter season. We chose aggregation at the
regional level to mitigate the potential effects of spatial gaps in disease reporting
that may resultin false absences (e.g., a local wildlife health department does not
consistently report disease data to WHISPers). Although most species reported
were birds, other animals like domestic cats (Felis catus, n = 3) and one unlucky
muskrat (Ondatra zibethicus, n = 1) were reported as being involved in winter
salmonellosis outbreaks. Like any opportunistic dataset, it is likely that disease
events are underreported. However, we did not observe any clear linear trends
in outbreak frequency or severity during the study period that might suggest a
change in reporting frequency over the study period (Fig. 3). Because pine siskin
irruption time series are detrended, any correlation between reported outbreaks
and irruptions are the result of interannual variation rather than long-term trends.

We then modeled the log-transformed number of individuals (adding one
to all values to avoid taking the log of zero) reported in all regional disease out-
breaks (D) using a hurdle model with a gamma distribution to account for the
overrepresentation of zeros in regional outbreak time series (i.e., years in which
no outbreaks were detected). We considered using a zero-inflated Poisson distri-
bution using the nontransformed data but found it a worse fit for the extremely
right-skewed distribution of outbreak sizes. The first step of this model estimates
the effect of irruptions on the probability of an outbreak of any size being reported
as a function of pine siskin irruptions, /, , .

0 if D, =0

P(D,,)= ,
S > ifD,,>0

8
(1—9)*Gamma</l L (8]

1
r eCr+Kr*Ir,1,t
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1
0=1- <‘| +e‘l’r+ﬁr*lr,1,! >' [9]

where 1 — @ is the probability of the occurrence of an outbreak of any size, y is
the intercept term, and B is the effect of pine siskin irruptions on the likelihood
of a regional outbreak. If an outbreak does occur, the outbreak size (measured as
the total number of individuals reported sick or dead in each region) is modeled
as a function of pine siskin irruption size where ¢ is the intercept, k- is the effect
of pine siskin irruptions on outbreak size, and A is the shape parameter.

Model Fit and Reporting. We fit our statistical models, including the forecasting
models described below, using the package rstan (41). For the hypothesis testing
model, we ran our model with 8,000 iterations total, 2,000 warm-up iterations,
and athin factor of two. For the forecasting models (see below), we ran our model
with 8,000 iterations total, 2,000 warm-up iterations, and a thin factor of two
except for the two least informed models which needed more iterations (14,000)
to pass model checks. We implemented thinning due to the excessive space
requirements (~1.5 GB for each of the 43 models fit). All model parameters were

checked for convergence, with a R <1.03 and effective sample sizes > 400, and
for problematic posterior geometry indicated via divergences or energy warnings.
The posterior predictive overlap was assessed using MCMCvis (42) and is reported
in SI Appendix, Table S3 and Dataset S1. For our hypothesis testing model, we
also checked for problematic parameter correlations via the package shinystan
(43), and observed no issues.

In reporting our results, we use the “language of evidence” framework to
avoid traditional and problematic cutoffs for statistical significance (44). We report
89% credible intervals in line with (45), and the proportion of the posterior that
is greater than (p(PARAMETER>0) or less (p(PARAMETER<O0) than zero for each
parameter.

Forecast Generation and Analysis. We used our statistical model to predict
future conditions by modeling the upcoming state of cone production, irruptions,
and outbreaks as unknown states. Functionally, the model predicts future cone
production using known climate data and estimates of local masting from previ-
ous years, as well as a yearly intercept value a, drawn from the model-estimated
distribution N(p,,, o).

To determine whether our hypothesis-testing model was effective at fore-
casting, we fit a series of independent, identically structured statistical models
(hereafter, “full forecasting model”) using 21 different historical datasets, each
with successively longer time series. This predictive evaluation simulates how
the model would have performed if it was used to make predictions starting
21y ago (starting at the midpoint of the study period), updated each year with
new data, and then evaluated the following year using observed data. Although
we focused on predicting upcoming outbreaks in the near-term (with an approxi-
mate 6-mo lead time), our model could be used to predict outbreaks farther into
the future (likely with declining efficacy). In addition, we also trained models using
the same methodology, except that models were blinded to contemporary cone
production information (hereafter, "blinded forecasting model").

To assess the value of the full and blinded forecasting models, we compared
probabilistic model-predicted irruption and outbreak size distributions to those
generated via a probabilistic historical null model (“historical model”). The histor-
ical model simply assumes that the probability of an irruption and outbreak of a
given size is equivalent to the frequency at which those events have occurred in
previous years (i.e., no predictor variables are used). Using a measure of probabil-
istic forecasts called the continuous ranked probability score, or CRPS (46), using
the r package scoringRules (47), we scored each forecast of regional irruptions
and disease outbreak size for the historical, blinded, and full models. The CRPS
score penalizes forecasts both for being imprecise (i.e., uncertain) and for being
inaccurate (i.e., biased). We then calculated the CRPSS of the full and blinded
model by comparing the sum of scores across the 21y of forecasts to those gen-
erated by the historical model (48):

Z CRP Sfu//
CRPSSy =1 = 5 —ppc——
full > CRPSictorical o
CRPS, |
CRPSSpiinged = 1 = 2 o T

Z CRP. Shistoricall
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For reporting purposes, we then convert CRPSS to a percentage (S/ Appendix,
Table S1). Skill scores provide a measure of the relative accuracy and preci-
sion of a probabilistic forecast compared to an existing benchmark, with a
positive value representing an improvement. To represent the performance
of our model-generated forecasts, we provide a graphical representation of
the model-estimated likelihoods of outbreak of different sizes over the last
21y (SI Appendix, Fig. S4). Because some parties may be interested in the
predictive accuracy of our forecasting model to predict outbreaks of various
sizes—for example, an agency may only want to send a warning to the public
if the probability of a severe outbreak is high-we provide an assessment of
the accuracy of the historical baseline model, the blinded model, and the full
forecasting model using Brier scores (29). We compare the performance of each
model using the Brier skill score (30) and report these results in S/ Appendix,
Table S2.

Data, Materials, and Software Availability. All code needed to conduct
this analysis and reproduce all figures is available on GitHub (https://github.
com/bentonelli/Climate_to_Salmonella_PNAS)(49) and archived on Zenodo
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